7 research outputs found

    Online Learning for Time Series Prediction

    Full text link
    In this paper we address the problem of predicting a time series using the ARMA (autoregressive moving average) model, under minimal assumptions on the noise terms. Using regret minimization techniques, we develop effective online learning algorithms for the prediction problem, without assuming that the noise terms are Gaussian, identically distributed or even independent. Furthermore, we show that our algorithm's performances asymptotically approaches the performance of the best ARMA model in hindsight.Comment: 17 pages, 6 figure

    Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design

    Full text link
    It is well known that collaborative filtering (CF) based recommender systems provide better modeling of users and items associated with considerable rating history. The lack of historical ratings results in the user and the item cold-start problems. The latter is the main focus of this work. Most of the current literature addresses this problem by integrating content-based recommendation techniques to model the new item. However, in many cases such content is not available, and the question arises is whether this problem can be mitigated using CF techniques only. We formalize this problem as an optimization problem: given a new item, a pool of available users, and a budget constraint, select which users to assign with the task of rating the new item in order to minimize the prediction error of our model. We show that the objective function is monotone-supermodular, and propose efficient optimal design based algorithms that attain an approximation to its optimum. Our findings are verified by an empirical study using the Netflix dataset, where the proposed algorithms outperform several baselines for the problem at hand.Comment: 11 pages, 2 figure

    Online time series prediction with missing data. In

    No full text
    Abstract We consider the problem of time series prediction in the presence of missing data. We cast the problem as an online learning problem in which the goal of the learner is to minimize prediction error. We then devise an efficient algorithm for the problem, which is based on autoregressive model, and does not assume any structure on the missing data nor on the mechanism that generates the time series. We show that our algorithm's performance asymptotically approaches the performance of the best AR predictor in hindsight, and corroborate the theoretic results with an empirical study on synthetic and real-world data

    Online Learning for Adversaries with Memory: Price of Past Mistakes

    No full text
    Abstract The framework of online learning with memory naturally captures learning problems with temporal effects, and was previously studied for the experts setting. In this work we extend the notion of learning with memory to the general Online Convex Optimization (OCO) framework, and present two algorithms that attain low regret. The first algorithm applies to Lipschitz continuous loss functions, obtaining optimal regret bounds for both convex and strongly convex losses. The second algorithm attains the optimal regret bounds and applies more broadly to convex losses without requiring Lipschitz continuity, yet is more complicated to implement. We complement the theoretical results with two applications: statistical arbitrage in finance, and multi-step ahead prediction in statistics
    corecore